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Preface

The Machine Learning Tsunami

In 2006, Geoffrey Hinton et al. published a paper (https://homl.info/136)" showing
how to train a deep neural network capable of recognizing handwritten digits with
state-of-the-art precision (>98%). They branded this technique “Deep Learning” A
deep neural network is a (very) simplified model of our cerebral cortex, composed of
a stack of layers of artificial neurons. Training a deep neural net was widely consid-
ered impossible at the time,> and most researchers had abandoned the idea in the late
1990s. This paper revived the interest of the scientific community, and before long
many new papers demonstrated that Deep Learning was not only possible, but capa-
ble of mind-blowing achievements that no other Machine Learning (ML) technique
could hope to match (with the help of tremendous computing power and great
amounts of data). This enthusiasm soon extended to many other areas of Machine

Learning.

A decade or so later, Machine Learning has conquered the industry: it is at the heart
of much of the magic in today’s high-tech products, ranking your web search results,
powering your smartphone’s speech recognition, recommending videos, and beating
the world champion at the game of Go. Before you know it, it will be driving your car.

Machine Learning in Your Projects

So, naturally you are excited about Machine Learning and would love to join the

party!

1 Geoffrey E. Hinton et al., “A Fast Learning Algorithm for Deep Belief Nets,” Neural Computation 18 (2006):
1527-1554.

2 Despite the fact that Yann LeCun’s deep convolutional neural networks had worked well for image recognition
since the 1990s, although they were not as general-purpose.
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Perhaps you would like to give your homemade robot a brain of its own? Make it rec-
ognize faces? Or learn to walk around?

Or maybe your company has tons of data (user logs, financial data, production data,
machine sensor data, hotline stats, HR reports, etc.), and more than likely you could
unearth some hidden gems if you just knew where to look. With Machine Learning,
you could accomplish the following and more (https://homl.info/usecases):

* Segment customers and find the best marketing strategy for each group.
» Recommend products for each client based on what similar clients bought.
» Detect which transactions are likely to be fraudulent.

» Forecast next year’s revenue.

Whatever the reason, you have decided to learn Machine Learning and implement it
in your projects. Great idea!

Objective and Approach

This book assumes that you know close to nothing about Machine Learning. Its goal
is to give you the concepts, tools, and intuition you need to implement programs
capable of learning from data.

We will cover a large number of techniques, from the simplest and most commonly
used (such as Linear Regression) to some of the Deep Learning techniques that regu-
larly win competitions.

Rather than implementing our own toy versions of each algorithm, we will be using
production-ready Python frameworks:

« Scikit-Learn (http://scikit-learn.org/) is very easy to use, yet it implements many
Machine Learning algorithms efficiently, so it makes for a great entry point to
learning Machine Learning. It was created by David Cournapeau in 2007, and is
now led by a team of researchers at the French Institute for Research in Com-
puter Science and Automation (Inria).

» TensorFlow (https://tensorflow.org/) is a more complex library for distributed
numerical computation. It makes it possible to train and run very large neural
networks efficiently by distributing the computations across potentially hundreds
of multi-GPU (graphics processing unit) servers. TensorFlow (TF) was created at
Google and supports many of its large-scale Machine Learning applications. It
was open sourced in November 2015, and version 2.0 was released in September
2019.

» Keras (https://keras.io/) is a high-level Deep Learning API that makes it very sim-
ple to train and run neural networks. It can run on top of either TensorFlow,
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Theano, or Microsoft Cognitive Toolkit (formerly known as CNTK). TensorFlow
comes with its own implementation of this API, called tf.keras, which provides
support for some advanced TensorFlow features (e.g., the ability to efficiently
load data).

The book favors a hands-on approach, growing an intuitive understanding of
Machine Learning through concrete working examples and just a little bit of theory.
While you can read this book without picking up your laptop, I highly recommend
you experiment with the code examples available online as Jupyter notebooks at
https://github.com/ageron/handson-mi?2.

Prerequisites

This book assumes that you have some Python programming experience and that you
are familiar with Python’s main scientific libraries—in particular, NumPy (http://
numpy.org/), pandas (http://pandas.pydata.org/), and Matplotlib (http://matplot
lib.org/).

Also, if you care about what’s under the hood, you should have a reasonable under-
standing of college-level math as well (calculus, linear algebra, probabilities, and sta-
tistics).

If you don’t know Python yet, http://learnpython.org/ is a great place to start. The offi-
cial tutorial on Python.org (https://docs.python.org/3/tutorial/) is also quite good.

If you have never used Jupyter, Chapter 2 will guide you through installation and the
basics: it is a powerful tool to have in your toolbox.

If you are not familiar with Python’s scientific libraries, the provided Jupyter note-
books include a few tutorials. There is also a quick math tutorial for linear algebra.

Roadmap

This book is organized in two parts. Part I, The Fundamentals of Machine Learning,
covers the following topics:

« What Machine Learning is, what problems it tries to solve, and the main cate-
gories and fundamental concepts of its systems

« The steps in a typical Machine Learning project
« Learning by fitting a model to data

« Optimizing a cost function

« Handling, cleaning, and preparing data

« Selecting and engineering features
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Selecting a model and tuning hyperparameters using cross-validation

The challenges of Machine Learning, in particular underfitting and overfitting
(the bias/variance trade-off)

The most common learning algorithms: Linear and Polynomial Regression,
Logistic Regression, k-Nearest Neighbors, Support Vector Machines, Decision
Trees, Random Forests, and Ensemble methods

Reducing the dimensionality of the training data to fight the “curse of dimen-
sionality”

Other unsupervised learning techniques, including clustering, density estima-
tion, and anomaly detection

Part I, Neural Networks and Deep Learning, covers the following topics:

What neural nets are and what they’re good for
Building and training neural nets using TensorFlow and Keras

The most important neural net architectures: feedforward neural nets for tabular
data, convolutional nets for computer vision, recurrent nets and long short-term
memory (LSTM) nets for sequence processing, encoder/decoders and Trans-
formers for natural language processing, autoencoders and generative adversarial
networks (GANSs) for generative learning

Techniques for training deep neural nets

How to build an agent (e.g., a bot in a game) that can learn good strategies
through trial and error, using Reinforcement Learning

Loading and preprocessing large amounts of data efficiently

Training and deploying TensorFlow models at scale

The first part is based mostly on Scikit-Learn, while the second part uses TensorFlow
and Keras.

. Don't jump into deep waters too hastily: while Deep Learning is no

doubt one of the most exciting areas in Machine Learning, you
should master the fundamentals first. Moreover, most problems
can be solved quite well using simpler techniques such as Random
Forests and Ensemble methods (discussed in Part I). Deep Learn-
ing is best suited for complex problems such as image recognition,
speech recognition, or natural language processing, provided you
have enough data, computing power, and patience.
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